24 research outputs found

    Synchronization Phenomena in Coupled Birkhoff-Shaw Chaotic Systems Using Nonlinear Controllers

    Get PDF
    In this chapter, the well-known non-autonomous chaotic system, the Birkhoff-Shaw, which exhibits the structure of beaks and wings, typically observed in chaotic neuronal models, is used in a coupling scheme. The Birkhoff-Shaw system is a second-order non-autonomous dynamical system with rich dynamical behaviour, which has not been sufficiently studied. Furthermore, the master-slave (unidirectional) coupling scheme, which is used, is designed by using the nonlinear controllers to target synchronization states, such as complete synchronization and antisynchronization, with amplification or attenuation in chaotic oscillators. It is the first time that the specific method has been used in coupled non-autonomous chaotic systems. The stability of synchronization is ensured by using Lyapunov function stability theorem in the unidirectional mode of coupling. The simulation results from system’s numerical integration confirm the appearance of complete synchronization and antisynchronization phenomena depending on the signs of the parameters of the error functions. Electronic circuitry that models the coupling scheme is also reported to verify its feasibility

    Nonlinear systems

    No full text

    New class of chaotic systems with equilibrium points like a three-leaved clover

    No full text
    This paper presents a new class of chaotic systems with infinite number of equilibrium points like a three-leaved clover. They signify an exciting class of dynamical systems which represent many major characteristics of regular and chaotic motions. These chaotic systems belong to the general class of chaotic systems with hidden attractors. By using a systematic computer search, three chaotic systems with three-leaved-clover-shaped equilibria were found which are classified into dissipative systems. Dynamics of the chaotic system with the three-leaved-clover-equilibria has been investigated by using phase portraits, bifurcation diagram, Lyapunov exponents, Kaplan-Yorke dimension and Poincar, map. Moreover, an electronic circuit implementation of the theoretical system is designed to check its effectiveness. Random number generator design has been realized with newly developed chaotic systems. The obtained random bit sequences are used for image encryption. Security analysis of image encryption processes has been performed

    A Chaotic System with Infinite Number of Equilibria Located on an Exponential Curve and Its Chaos-Based Engineering Application

    No full text
    This paper proposes a novel chaotic system with infinite number of equilibria located on an exponential curve. It signifies an exciting category of dynamical systems which display many features of regular and chaotic motions. The proposed chaotic system belongs to the general category of chaotic systems with hidden attractors. Moreover, some theoretical analyses of the chaotic system's dynamical characteristics are presented. Using the developed chaotic system, the new random number generator and encryption algorithm have been designed. Encryption application and security analysis are presented verifying its feasibility

    Implementation of a Hyperchaotic System with Hidden Attractors into a Microcontroller

    No full text
    In this work, the implementation of a hyperchaotic oscillator by using a microcontroller is proposed. The dynamical system, which is used, belongs to the recently new proposed category of dynamical systems with hidden attractors. By programming the microcontroller, the three most useful tools of nonlinear theory, the phase portrait, the Poincaré map and the bifurcation diagram can be produced. The comparison of these with the respective simulation results, which are produced by solving the continuous dynamical system with Runge-Kutta, verified the feasibility of the proposed method. The algorithms could be easily modified to add or substitute the hyperchaotic system
    corecore